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SUMMARY

MicroRNAs (miRNAs) are important post-transcrip-
tional regulators of gene expression, functioning in
part by facilitating the degradation of target mRNAs.
They have an established role in controlling epithe-
lial-mesenchymal transition (EMT), a reversible
phenotypic program underlying normal and patho-
logical processes. Many studies demonstrate the
role of individual miRNAs using overexpression at
levels greatly exceeding physiological abundance.
This can influence transcripts with relatively poor tar-
geting and may in part explain why over 130 different
miRNAs are directly implicated as EMT regulators.
Analyzing a human mammary cell model of EMT we
found evidence that a set of miRNAs, including
the miR-200 and miR-182/183 family members, co-
operate in post-transcriptional regulation, both
reinforcing and buffering transcriptional output.
Investigating this, we demonstrate that combinato-
rial treatment altered cellular phenotype with miRNA
concentrations much closer to endogenous levels
and with less off-target effects. This suggests that
co-operative targeting by miRNAs is important for
their physiological function and future work classi-
fying miRNAs should consider such combinatorial
effects.

INTRODUCTION

Epithelial-mesenchymal transition (EMT) is a reversible pheno-

typic switch that has gained significant attention due to its role

in both normal physiological (e.g., gastrulation and wound heal-

ing) and pathological (e.g., fibrosis, metastasis, and chemo-
Cell Systems 7, 77–9
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resistance) processes (Ye and Weinberg, 2015). Many aspects

of EMT regulation are well known: it is driven by co-ordinated

changes in gene expression, controlled by both transcription

factors (particularly the ZEB, SNAIL, and TWIST families) and

miRNAs (such as the miR-200 family) linked through multiple

co-regulatory relationships (Bracken et al., 2016; Lu et al.,

2013; Friard et al., 2010; Gosline et al., 2016; Re et al., 2009).

Many studies investigating the role of specific miRNAs have em-

ployed overexpression or ectopic exposure at concentrations

greatly exceeding physiological abundances. Given that miRNA

binding affinities are dose dependent, this overexpression likely

has a multitude of off-target effects, influencing gene transcripts

that are not functional targets at endogenous miRNA levels

(Witwer and Halushka, 2016). EMT-promoting stimuli (such as

transforming growth factor b [TGF-b]) cause changes in the

expression of multiple miRNAs, but induced abundances are

typically far lower than those achieved by transfection with

miRNA mimics. This suggests a discrepancy between the func-

tion of miRNAs with moremodest endogenous expression levels

and the effect of individual miRNAs when expressed at levels far

beyond their physiological concentration. We hypothesized that

the co-operative actions of multiple miRNAsmay thus contribute

to their function in controlling EMT.

The role of somemiRNAs in EMT is well established; however,

over 130 different miRNAs have been directly implicated in regu-

lating EMT (Table S1), raising questions about the effects of

common experimental manipulations (e.g., miRNA overexpres-

sion) and the extent to which these relationships are biologically

meaningful or a reasonable reflection of endogenous function.

As miRNAs can directly regulate a multitude of targets, there

has been a focus on their characterization following manipula-

tion; however, it appears that the primary effects of miRNA

perturbation are mediated by transcription factors (Gosline

et al., 2016), and thus by solely characterizing direct targets,

the field has failed to capture the impact of miRNAs upon regu-

latory networks. Furthermore, it was recently reported that

many predicted miRNA targets are functionally insensitive at
1, July 25, 2018 ª 2018 The Authors. Published by Elsevier Inc. 77
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endogenous miRNA levels and many miRNA target sites identi-

fied by computational algorithmsmay be conserved due to other

evolutionary drivers (Pinzón et al., 2017).

Significant questions remain regarding the role of miRNAs in

EMT regulation: which miRNAs are truly capable of regulating

the EMT/mesenchymal-epithelial transition (MET) process

in vivo and during cancer progression; to what extent do

miRNAs regulate EMT at physiological concentrations; what

are the endogenous roles of individual miRNAs given that

EMT-promoting stimuli drive co-ordinated up- and downregula-

tion for dozens of miRNAs? To address these questions, we

combined computational and experimental methods to identify

co-regulated miRNAs that have the potential for functional co-

operation during EMT. We explore the contribution of endoge-

nous miRNAs to the regulation of EMT/MET and demonstrate

that the combinatorial activities of co-regulated miRNAs is cen-

tral to their natural function. To an extent, these co-operative

functions can be achieved by the massive overexpression of in-

dividual miRNA components but this fails to fully re-capitulate

the endogenous function and is associated with off-target

effects.

We demonstrate that miRNAs provide a secondary regulatory

layer after transcription, amplifying transcriptional effects on

relevant EMT-associated processes (such as cell adhesion and

extracellular matrix organization) while simultaneously buffering

transcriptional effects on non-EMT genes. We also show that,

at physiologically relevant expression levels, EMT is regulated

by multiple miRNAs acting in a combinatorial manner. We

observe a dominant role for miR-200c-3p, which is augmented

by miR-141-3p, miR-182-5p, and miR-183-5p; these miRNAs

are not only simultaneously suppressed during TGF-b-induced

EMT and co-regulated across a large cohort of breast cancer

samples, but computational analyses also suggest functional

co-operation, co-targeting genes that are in close proximity

within protein interaction networks. Furthermore, as miRNA

function is proportional to abundance, we find that transfection

with multiple miRNAs at sub-nanomolar concentrations is suffi-

cient to regulate EMT without off-target effects that are evident

at high concentrations. While this work seeks to better under-

stand co-ordinated regulation of the EMT process, we anticipate

that our findings of the importance of co-operative miRNA func-

tion at non-supra-physiological levels, and the global role of

miRNAs in supporting and modulating transcriptional output,

should be applicable to all miRNA systems.

RESULTS

The HMLE Cell Model of EMT Shares a Transcriptional
Profile with Claudin-Low Metaplastic Tumors
Following prolonged (24-day) exposure to TGF-b, human

mammary epithelial (HMLE) cells establish a stable sub-line

(MesHMLE) with morphological (Figure 1A), protein (Figure 1B),

and mRNA transcript (Figure 1C) changes indicative of EMT.

Subsequent overexpression of miR-200c (MesHMLE + miR-

200c) is sufficient to reverse morphological changes (Figure 1A)

consistent with MET. However, molecular changes suggest MET

is partial, with VIM (vimentin) remaining high despite increased

CDH1 (E-cadherin) and reduced ZEB1 expression (Figures 1B

and S1A).
78 Cell Systems 7, 77–91, July 25, 2018
We have previously examined the relative molecular pheno-

types of cells on a 2D epithelial and mesenchymal landscape

(Foroutan et al., 2017). To characterize our model system,

gene set scores for the HMLE cell system (Figure 1D) were

compared with TCGA breast cancer samples (The Cancer

Genome Atlas Network, 2012) and a number of established

breast cancer cell lines (Daemen et al., 2013; Heiser et al.,

2012). The TGF-b-driven HMLE to MesHMLE transition is asso-

ciated with a large reduction in epithelial score and a smaller in-

crease in the mesenchymal score (Figure 1D). The subsequent

MesHMLE + miR-200c cells have a similar mesenchymal score

to the original HMLE cells, but only a partial restoration of the

epithelial phenotype. This is consistent (Figures 1A–1C) and

supports the notion of partial MET driven by exogenous miR-

200c exposure. MesHMLE cells also show a similar molecular

phenotype to basal B claudin-low cell lines (Blick et al., 2008)

(Figure S1B) and have scores similar to a rare subset of TCGA

breast cancer samples that typically have ametaplastic histolog-

ical annotation (Table S2A; Figure S1C). These cancers are

characterized by lower expression of epithelial markers and

higher expression of mesenchymal markers than other samples

(Figure S1D).

Post-transcriptional Gene Regulation Simultaneously
Reinforces and Buffers Transcriptional Changes
During EMT, complex changes in gene expression are co-ordi-

nated through transcriptional and post-transcriptional regula-

tion, largely governed by transcription factors (TFs) andmiRNAs,

respectively. To assess their contributions we used exon-intron

split analysis (EISA) (Gaidatzis et al., 2015): as most miRNA-

mediated post-transcriptional regulation occurs after transcripts

are exported from the nucleus to the cytoplasm, intronic read dif-

ferences between two conditions (Dintron) are indicative of

altered gene transcription, whereas differences between exon

and intron read changes (Dexon – Dintron) suggest altered

post-transcriptional regulation. To ensure that the Dintron and

Dexon –Dintron data were robust to alignment and quantification

methods, an alternative pipeline was run in parallel; the resulting

data were largely consistent (Figure S2).

The EISAmetrics show that transcriptional and post-transcrip-

tional regulation can either work in unison or opposition. Genes

that are both transcriptionally and post-transcriptionally upregu-

lated or downregulated we annotate as ‘‘co-ordinately

increased’’ (CI) or ‘‘co-ordinately decreased’’ (CD). Genes where

the transcriptional increase is counteracted by post-transcrip-

tional downregulation (or vice versa) we label as ‘‘increased,

buffered’’ (IB) and ‘‘decreased, buffered’’ (DB) (Figure 2A;

Table 1). Comparing HMLE and MesHMLE cells we expect

post-transcriptionally downregulated genes to be targeted by

miRNAs associated with a mesenchymal state. Conversely, the

loss of repression from miRNAs predominantly expressed in

the epithelial state would drive post-transcriptional upregulation.

There was a marked difference in the enrichment of gene

ontology terms, with genes subject to co-ordinated regulation

highly enriched for processes central to EMT (Figure 2B). For

example, terms including ‘‘extracellular matrix’’ and ‘‘cell migra-

tion’’ were enriched for the CI gene set, while CD genes were

involved in processes such as ‘‘cell junction organization’’ and

‘‘epithelial cell development.’’ In contrast, genes with buffered



Figure 1. Characterizing Our Human Cell-

Line Model of EMT

(A) The morphology of HMLE, MesHMLE

(HMLE +24 days TGF-b), and MesHMLE cells

exposed to 20 nMofmiR-200cmimic (MesHMLE +

miR-200c). Scale bar, 100 mm.

(B) Western blots showing protein expression for

selected epithelial (E-cadherin, encoded byCDH1)

and mesenchymal (ZEB1, vimentin) markers.

(C) Gene expression changes from RNA se-

quencing (RNA-seq) and qPCR transcript abun-

dance data. GAPDH was used for qPCR normali-

zation and ACTB is an internal control. Error bars

represent SD.

(D) A density plot of epithelial and mesenchymal

score for TCGA breast cancer samples (hexbin),

overlaid with a scatterplot of epithelial and

mesenchymal scores for individual breast cancer

cell lines. The epithelial and mesenchymal gene

sets derived by Tan et al. (2014) have distinct cell

line and tissue signatures to account for the more

complex composition of tissue, however, factors

such as sample purity may influence the tran-

scriptional profile.
expression had far less enrichment, indicating diverse genes

with no strong functional similarity. Terms significant for the buff-

ered sets were associated with relatively small numbers of genes

and had no obvious EMT link.

During EMT miRNAs Co-regulate Functionally Related
Transcripts
Within gene regulatory networks ‘‘feedback motifs’’ between

miRNAs and TFs are relatively common, and specific relation-

ships, such as that between miR-200 and the ZEB transcription
factors (Bracken et al., 2015, 2016), are

known to underpin EMT. The transcrip-

tomic changes we observe during HMLE

cell EMT (Figure 2) speak to a broader de-

gree of transcriptional and post-transcrip-

tional co-regulation, with miRNAs acting

to both reinforce TF activity and buffer

genes with altered transcription that are

not essential for EMT.

Thus we sought to characterize the

roles of endogenous miRNAs in co-ordi-

nating EMT gene regulation. We ranked

miRNAs by their relative abundance

and magnitude of differential expression

(Figure 3A). In general, miRNAs that

decreased have been described as pro-

epithelial and associated with MET, while

miRNAs that increased in abundance are

generally pro-mesenchymal and associ-

ated with EMT (Table S1). An exception

is miR-204 which has been described as

pro-epithelial in a number of studies,

but undergoes a large increase in abun-

dance with the HMLE-to-MesHMLE tran-

sition (Figure 3A). Epithelial- and mesen-
chymal-specific expression of the EMT-responsive miRNAs

were also seen in TCGA breast cancer data, with a particularly

strong positive correlation with epithelial score and negative cor-

relationwithmesenchymal score found for themost ‘‘pro-epithe-

lial’’ miRNAs (Figure 3B).

To determine the contribution of eachmiRNA from Figure 3A in

directly controlling gene expression, we calculated the relative

enrichment of high-confidence predicted targets within each of

the EISA-partitioned gene sets (Figure 3C). Genes post-tran-

scriptionally upregulated during EMT (the CI and DB gene sets)
Cell Systems 7, 77–91, July 25, 2018 79
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Figure 2. Post-transcriptional Regulation Can

Reinforce or Buffer Transcriptional Changes

Associated with Specific Biological Processes

(A) The categories into which genes were classified

using exon-intron split analysis (EISA).

(B) For each gene set the number of significant gene

ontology (GO) annotations is shown, grouped across

GO category list size and the degree of statistical

support (log10(p value)). For visualization only signifi-

cant (adjusted p value < 1 3 10�3) groups with a

minimum GO list size of 40 are plotted (3D histo-

grams), while the largest and most significant GO

categories are listed. More comprehensive lists are

given in Table S3.
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Table 1. Gene Sets Partitioned by mRNA Abundance Changes

Metric Partitioned

Gene Set Label

Co-ordinated

Increase

Decreased,

Buffered No Change

Increased,

Buffered

Co-ordinated

Decrease

Dintron top 15% bottom 15% �0.1 -> 0.1 (30th–47th %ile) top 15% bottom 15%

Dexon – Dintron top 15% top 15% �0.1 -> 0.1 (46th–65th %ile) bottom 15% bottom 15%

Differential transcript abundance – – �0.3 -> 0.31 (31st–66th %ile) – –

Gene sets were partitioned using thresholds against mRNA differential expression and exon-intron split analysis (EISA) metrics.
are enriched for pro-epithelial miRNA target sites (Figure 3C,

upper panel), consistent with a loss of repression across these

genes as epithelial miRNA expression decreases during EMT.

The greatest relative enrichment of target sites is consistently

seen within the DB gene set, suggesting particularly important

roles for miRNAs in buffering unrelated transcription. Targets

for epithelial miRNAs are under-represented among post-tran-

scriptionally downregulated genes (the IB and CD gene sets,

upper panel). The absence of clear trends for predicted targets

of EMT upregulated miRNAs (Figure 3C, lower panel), coupled

with less-concordant changes for these miRNAs in TCGA data

(Figure 3B) suggests a dominant role for miRNAs associated

with a more differentiated epithelial state.

As multiple miRNAs appear co-regulated between epithelial

and mesenchymal states, both in our HMLE model and in

TCGA, we further investigated co-ordinated miRNA function

through co-operative regulation. Correlated expression was

examined between pairs of miRNAs across breast cancer sam-

ples (Figure 3D, top right), revealing extensive co-regulation

among epithelial and mesenchymal miRNAs (Figure 3D, red

shading of the upper left and lower sections) and, in general, a

slightly weaker inverse association when comparing epithelial

and mesenchymal miRNAs (Figure 3D, light blue shading of

upper right panel). Most positively correlated miRNA pairs,

such as miR-200c/miR-141 and miR-182/miR-183, are encoded

at genomic loci within 20 kb of each other (Figure 3D, bottom left,

green shading), and correlations likely reflect their polycistronic

clustering. However, moderate positive correlation in the

expression of non-polycistronic miRNAs, such as the miR-200

and miR-182/183 clusters, suggest co-regulation. The miRNAs

co-expressed our HMLE system also show similar associations

across a broader set of primary cell lines from the microRNAome

(McCall et al., 2017) (Figures S3A and S3B).

We hypothesized that miRNAs amplify their function through

co-regulation and co-operative targeting of functionally related

transcripts. This might be evident as direct co-targeting of a tran-

script by co-expressed miRNAs, or by targeting of transcripts

that encode proteins with functional relationships (e.g., direct

protein-protein interactions [PPIs]; Figure S4). To assess this

we constructed a regulatory network containing miRNAs with

large changes in abundance during HMLE cell EMT (Figure 3A)

and predicted targetmRNA transcripts, with known protein inter-

actions between targets. The resulting network (Figure S5) con-

tains 13,851 nodes (20miRNAs and 13,831mRNAs) and 147,487

edges (42,908 predicted miRNA:mRNA interactions without

filtering, and 104,578 protein interactions). It is difficult to distin-

guish structure within such complex networks so we used

network topology metrics to quantify miRNA co-regulation (Fig-
ure S4). In particular, we assessed miRNA direct co-targeting by

testing the null hypothesis that target overlap frequency is inde-

pendent between miRNAs (Figure 3E, top right). Between many

pro-epithelial miRNAs downregulated during EMT there was

particularly strong evidence against this (indicated by red

squares; adjusted p value < 1 3 10�3), suggesting enriched

co-targeting of individual genes. This was particularly evident

between miR-200b-3p, miR-200c-3p, miR-141-3p, and miR-

182-5p (and expected formiR-200b-3p andmiR-200c-3p, which

share a seed sequence).

We also quantified the connectivity of high-confidence pre-

dictedmiRNA target genes in the context of PPI networks, exam-

ining the density of bipartite graphs induced from paired miRNA

target lists to quantify co-targeting around protein interactions

and complexes (Figure 3E, bottom left). This shows relatively

high co-targeting between pro-epithelial miRNAs, suggesting

another dimension of co-operation between these miRNAs.

With the exception of miR-381-3p, which has a very large num-

ber of targets, this predicted co-regulation is largely absent for

pro-mesenchymal miRNAs, again consistent with the notion

that epithelial-associated miRNAs have a dominant role in

orchestrating epithelial-mesenchymal plasticity (EMP). We also

examined correlations between the abundance of miRNAs ex-

pressed across a number of primary cell lines (Figure S3A), which

included several miRNAs studied here (Figure S3B). We identi-

fied miRNAs with a strong cross-correlation (i.e., within the top

1 percentile of Figure S3A) and performed the co-targeting anal-

ysis across an expanded set of miRNA pairs (Figure S3C),

revealing a number of cross-correlated miRNA pairs (beyond

themiRNAs studied here) with evidence for co-targeting (Figures

S3B and S3D).

These results show highly co-regulated expression between

epithelial miRNAs, especially the miR-200c/141 and miR-182/

183 clusters (Figure 3A, 3C, and 3D), as well as evidence of

co-operative function through both direct overlap of target tran-

scripts, and through regulation of functionally interacting targets

(Figure 3E).

Multiple miRNAs Act in a Combinatorial Manner to
Promote MET
We tested the functional significance of these predicted co-reg-

ulators by re-expressing combinations of pro-epithelial miRNAs

in MesHMLE cells and investigating the resulting MET. Based

upon titrations of miR-200c mimics we selected a concentration

of 0.2 nM (far lower than the 5–20 nM typically used) for subse-

quent miRNA transfection into MesHMLE cells. At this abun-

dance, only miR-200c was sufficient to induce epithelial marker

genes (Figure 4A). While miR-141, miR-182, and miR-183
Cell Systems 7, 77–91, July 25, 2018 81
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Figure 3. miRNAsUndergoing Large Changes in Abundance during HMLECell EMT ShowConcordant Changes within TCGAData andOver-
lap in their Predicted Target Genes

(A) miRNAs were selected by relative abundance (summed across both states) and differential expression between HMLE and MesHMLE cells (details in the

STAR Methods); the top 20 miRNAs are shown, split by the direction of their change in abundance.

(B) Correlations between miRNA abundance and epithelial score or mesenchymal score across metaplastic TCGA breast cancer samples (Table S2B;

ntumours = 16).

(legend continued on next page)
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individually had no effect on epithelial gene expression they

acted in a co-operative manner with miR-200c, indicating the

importance of combinatorial miRNA activity at abundances at

least an order of magnitude lower (and closer to natural levels

of expression) than those at which miRNAs are typically

manipulated.

Conversely, treatment of epithelial HMLE cells with combina-

tions of antagomiRs did not appear to drive EMT to the same

extent. AntagomiRs against all four miRNAs led to minor

repression of ESRP1 (p % 1.84 3 10�2; all combined antago-

miRs against control) and minor upregulation of SNAI1,

but had little effect on the mRNA abundance of other EMT

markers tested (Figure S7A). It is important to note that

ZEB1 and ZEB2 transcripts are present at almost unde-

tectable levels in HMLE cells (Figure S7B) and relative to the

MesHMLE state, these genes are depleted for activating

histone marks and enriched for repressive histone marks

(Figure S7C). This suggests that these TFs are downregulated

through epigenetic mechanisms, and miRNAs may not be the

dominant suppressors under stable epithelial conditions.

Consistent with this, SNAI1, which had a minor increase in

mRNA abundance with combined antagomiR treatment (Fig-

ure S7A), is not as strongly regulated by histone modifications

(Figure S7C).

The relative contribution of miR-183 or miR-182 to epithelial

gene expression is dependent upon the gene in question: upre-

gulation of CDH1 depends upon miR-200c and miR-182,

whereas CDS1 is more reliant on miR-200c and miR-183 (Fig-

ure 4B). Further, although miR-200c drives the regulation of

epithelial genes, the miR-183/-182 family primarily suppresses

VIM (Figure 4C), probably through an indirect mechanism, as

neither TargetScan nor DIANA-microT predict VIM targeting

by either miRNA. A more prominent suppression of VIM and

ZEB1 proteins was observed for the miR-183/-182 and miR-

200 families, respectively (Figures 4C and 4D), under these

conditions.

A large increase in miR-204 abundance was observed with the

HMLE-to-MesHMLE transition (Figure 3A), contradicting a num-

ber of studies that have implicated miR-204 as pro-epithelial

(Table S1). We expressed miR-204 alone at varying concentra-

tions, and together at low levels with miR-200c (Figure 4E). In

this context, miR-204 alone (even at 20 nM) had no effect on

CDH1, CDH2, and ESRP1 mRNA abundance, and only minor

repressive effects upon ZEB2 andDSG3 (consistent with an indi-

vidually pro-epithelial role, at least when overexpressed). When

co-expressed with miR-200c, however, miR-204 antagonized

epithelial gene induction, suggesting that it may promote a

mesenchymal phenotype. This emphasizes the importance of

testing miRNA function at physiological levels and in the context

of other miRNAs, and may explain contradictory reports of

this apparently pro-mesenchymal miRNA promoting epithelial

characteristics.
(C) Relative enrichments of high-confidence predicted targets (top 5% of Targe

gene sets (as in Figure 2A).

(D) Pearson’s correlation for each pair of miRNAs across all TCGA breast cancer s

tissue samples, together with the genomic distance between miRNAs located on

(E) Several metrics were applied to measure miRNA target set interactions (Figu

protein interactions between the targets of each miRNA pair is shown on the bo
Ectopic miRNA Expression Effects Genes that Are Not
Functional Targets at Endogenous miRNA Levels
Supra-physiological miRNA concentrations (5–20 nM) may influ-

encemRNA transcripts that are not functionally regulated by that

miRNA at endogenous levels (Mayya and Duchaine, 2015;

Witwer and Halushka, 2016). Further, computational databases

may over-predict the number of transcripts functionally regu-

lated by miRNAs at endogenous expression levels (Pinzón

et al., 2017). To test this we compared EISA data for predicted

miR-200c targets during TGF-b-driven EMT against miR-200c-

driven MET, which involved exposure to ectopic miRNA at a

concentration (20 nM) well in excess of physiological levels

(Figure 5).

As noted earlier, non-zero values for Dintron are indicative of

altered transcription, while Dexon – Dintron indicates altered

post-transcriptional regulation. For reference, distributions for

all mRNAs are shown (Figure 5, top row) with density contours

superimposed upon plots of predicted target mRNAs with vary-

ing confidence (see percentile). The rotation and skew of these

distributions reflect the earlier observation that, at a systems

level, many genes experience transcriptional changes that are

supported by concordant regulatory changes (Figure 2).

During the HMLE-to-MesHMLE transition there was an

approximately 80-fold decrease in miR-200c driven by endoge-

nous factors downstream of TGF-b signaling; accordingly, there

is a bulk shift in target mRNAs toward positive Dexon – Dintron

values, particularly when compared with the distribution of all

genes. However, even for the strongest predicted targets, where

there is good overlap between databases, only a small fraction

are represented. Conversely, with miR-200c-induced MET,

over 70% of predicted targets show evidence of strong post-

transcriptional suppression. For miRNA targets predicted with

less confidence (lower percentile bins) there is a reduced enrich-

ment for post-transcriptional upregulation in EMT, while the cor-

responding bins for miR-200c overexpression still show over

60% of targets with post-transcriptional downregulation. These

results highlight substantial differences betweenmiR-200c over-

expression effects and endogenous changes (Figure 5, middle

column) in comparison with the effects associated with miR-

200c overexpression (Figure 5, right column). We strongly sus-

pect that the attribution of function to some miRNAs has been

confounded by miRNA overexpression effects upon targets

that would otherwise not be modulated at endogenous levels;

this may have contributed to an over-estimation of the impact

of many individual miRNAs on EMT (Table S1).

Combinations of miRNAs Can Induce MET with
Increased Specificity
As discussed above, overexpression of miR-200c drives

the post-transcriptional degradation of several hundred

predicted targets that are not under strong control by miR-

200c during TGF-b-induced EMT. This suggests that miR-200c
tScan and DIANA-microT targets) for each miRNA within the EISA-partitioned

amples (at top right) as ameasure of miRNA co-regulation across a larger set of

the same chromosome (at bottom left).

re S4) Overlap in miRNA targets is shown in red, top right, while the density of

ttom left.
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overexpression may have ‘‘off-target’’ effects that would not

occur endogenously, nor when EMT is driven by miRNA combi-

nations at lower levels. Increasing levels of miR-200c increased

the expression of multiple epithelial genes in a dose-dependent

manner (CDH1, ESRP1, and DSG3; Figure 6A) but not mesen-

chymal genes (with the prominent exception of ZEB2; Figures

6B and 6C). We identified overexpression off-target effects by

selecting genes that were: (1) altered in the RNA sequencing

data with ectopic miR-200c transfection (MesHMLE to

MesHMLE + miR-200c) but not TGF-b-induced EMT, (2) not

previously implicated in EMT, and (3) not predicted targets of

either the miR-200 or miR-182/-183 families. A number of these

off-target genes had dose-dependent effects with miR-200c

transfection, being either up- (FLJ44056 and TRIM58) or down-

regulated (CAMK2N2, GTF2I, and GBGT1). Consistent with our

previous result (Figure 4), co-transfection with low levels of

miR-200 and miR-182/-183 family members had a co-operative

effect on epithelial gene expression (Figure 6A), but importantly,

despite still driving MET-like gene expression, these low-level

miRNA combinations no longer influenced off-target mRNAs

(Figure 6D).

Finally, we investigated the phenotype of MesHMLE cells

following transfection of individual miRNAs or combinations of

miRNAs using a proliferation and migration assay. The relative

density of cells transfected with miR-200c, miR-141, miR-182,

and miR-183 was reduced compared with all other conditions

at both the 48- and 72-hr time points (Figure 6E). Furthermore,

MesHMLE cells treated with this combination showed reduced

migratory capacity (Figure 6F). These results show that low-

abundance pro-epithelial miRNAs exert a combinatorial effect

and induce amore-robust MET than that achieved through treat-

ment with extremely high concentrations of individual pro-

epithelial miRNAs.

DISCUSSION

Results presented here provide evidence for an alternative

model of miRNA function, where small, simultaneous changes

in the abundance of several miRNAs can exert strong functional

effects through distributed targeting across molecular networks,

with buffering of unrelated expression. Working with an estab-

lished model of TGF-b-induced EMT in breast cells (Figure 1),

we used the EISA method to separate transcriptional and post-

transcriptional changes. A small number of interesting genes

were lost with EISA due to very small intronic regions (e.g., the

well-studied miR-200c target CFL2; Bracken et al., 2014), or

very low abundance under certain conditions (e.g., ZEB2 with

themiR-200c-inducedMET); however, it still provides a powerful

approach to examine system-wide changes in the regulation of

mRNA transcripts. Subsequent gene ontology enrichment ana-
Figure 4. miRNAs Act in a Combinatorial Manner to Promote an Epithe

All qPCR abundances shown relative to GAPDH. Black asterisks indicate a sig

significant difference between annotated samples.

(A and B) Marker gene expression in MesHMLE cells 3 days after transfection w

(C) Expression of E-cadherin and vimentin in MesHMLE cells detected by immun

Scale bars represent 20 mm. Quantified fluorescence intensity (inset) was norma

(D) Expression of E-cadherin and ZEB1 by western blotting following treatment w

(E) Expression of marker genes with varying concentrations of miR-204 and/or 0
lyses using EISA-partitioned data identified several EMT-associ-

ated gene sets with increased abundance from promotion of

transcription that was enhanced by a loss of repression from

epithelial-promoting miRNAs, and, similarly, a set of mesen-

chymal-associatedmiRNAs that supported the effects of repres-

sive TFs, which exerted their effects during EMT (Figure 2A;

distribution skew/rotation in Figure 5). A number of TFs within

the CI and decreased gene sets are important regulators of

EMT, in particular ZEB1/ZEB2 (Gregory et al., 2008; Lamouille

et al., 2014; Perdigao-Henriques et al., 2016), RUNX2 (Chimge

et al., 2011; Tan et al., 2016), and GRHL2 (Cieply et al., 2013;

Mooney et al., 2017), reflecting the high degree of interaction be-

tween transcriptional and post-transcriptional control.

Not only do miRNAs provide an additional regulatory layer to

enhance transcriptional regulation, but they also prominently

buffer effects on ‘‘bystander’’ genes that are not needed in

EMT but that nevertheless are transcriptionally affected by

regulators of EMT. This can be seen both in Figure 3C, where

‘‘buffered’’ genes (lane 2, epithelial panel) have the greatest

enrichment of miRNA target sites, and in Figure 5, where targets

in the buffered quadrants are especially regulated after miR-

200c expression. Given that these genes are buffered by

miRNAs (and thus, do not appear among the genes with strong

differential expression), such relationships may be under-repre-

sented in studies aiming to characterize the strongest targets

and, as such, this important (and general) aspect of miRNA func-

tion remains under-appreciated. miRNAs therefore play an

important role in transcriptomic homeostasis extending beyond

the well-studied miRNA:TF reciprocal inhibition motif (Gregory

et al., 2008; Tam and Weinberg, 2013; Bracken et al., 2016),

which provides an important regulatory module within biological

networks (Lu et al., 2013; Jolly et al., 2016).

Another key finding is the importance of combinatorial miRNA

function, which is often masked in single miRNA overexpression

studies (Witwer and Halushka, 2016). We observe this clearly

when comparing EISA profiles for HMLE cells that are exposed

to TGF-b, where miR-200c-3p levels are naturally reduced

80-fold, against the profiles of cells after exogenous miR-200c

overexpression, where hundreds of weak target genes become

miR-200c responsive (Figure 5). For miR-200c, perhaps the

most well-known enforcer of an epithelial phenotype, we note

that individually it has minimal impact driving MET when ex-

pressed at low levels (Figures 4 and 6). Instead, we have identi-

fied miRNAs that are co-regulated with miR-200c and predicted

to co-target common protein complexes (Figure 3E), and we

observe a dramatic additive effect when simultaneously modu-

lating these miRNAs to promote MET (Figure 4). Although the

EMT-promoting effects of multiple low-level miRNAs are similar

to that of single miRNA overexpression, combinatorial miRNAs

at modest expression levels minimize off-target effects. This
lial Phenotype

nificant difference (p < 0.01) from control samples, blue asterisks indicate a

ith 0.2 nM of indicated miRNAs.

ofluorescence 3 days after transfection with 0.2 nM of the indicated miRNAs.

lized against DAPI intensity (for individual cells). Scale bars represent 20 mm.

ith specified miRNA combinations at 0.2 nM.

.2 nM miR-200c.
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Figure 5. Differences in the Transcriptional and Post-transcriptional Regulation of mRNA Transcripts

The number ofmiRNA targets from each database and the overlap is shown (Venn diagrams on the left). The distribution ofDintron andDexon –Dintron values are

shown for mRNA transcripts during the HMLE-to-MesHMLE and MesHMLE-to-MesHMLE + miR-200c transitions. The density of all mRNA transcripts is shown

(top row), and contour values are superimposed over the distribution of mRNA transcripts within the specified percentile range of database scores. Within each

EISA data plot, red horizontal and vertical lines indicate the origin of each plot and the relative proportion of mRNA transcripts within each resulting quadrant is

shown. In the scatterplots of percentile-binned targets, markers are colored by a kernel estimate of sample density. Note that there are differences in the number

of miR targets across percentile bins of each database, and DIANA-microT in particular predicts a very large number of miR-200c-3p targets within the highest-

scoring group (Figure S6).
may have clinical relevance, as this work suggests combinatorial

manipulation could both achieve greater specificity than single

miRNA expression and require lower levels of miRNA perturba-

tion, which might be more easily achievable in vivo. While we

demonstrate these combinatorial relationships between mem-

bers of the miR-200 and miR-182/-183 families (Figures 4

and 6) in the induction of an epithelial phenotype, it is likely
86 Cell Systems 7, 77–91, July 25, 2018
that more miRNAs participate in this role and that this research

describes an important type of combinatorial function that is

likely applicable to all endogenous aspects of miRNAs.

The relative contribution of miRNAs to the control of EMP is

dependent not only upon miRNA abundance but also the

expression level of key miRNA-targeted transcripts and the ac-

tivity of other regulatory mechanisms. This is well demonstrated



A C D

B

E F

Figure 6. Transfection of Sub-nanomolar Concentrations of Co-operative Epithelial-Enforcing miRNAs Can Drive MET with Reduced Off-

Target Effects, Reduced Proliferation and Reduced Migration

All qPCR abundances shown relative to GAPDH. Black asterisks indicate a significant difference (p < 0.01) from control samples, blue asterisks

indicate a significant difference between annotated samples. Genes are divided into (A) known pro-epithelial markers, (B) known pro-mesenchymal markers,

(legend continued on next page)
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by the inability of antagomiR repression against miR-141, miR-

200c, miR-182, and miR-183 to effectively drive EMT in HMLE

cells (Figure S7A); ZEB1 and ZEB2 are already expressed at

very low levels in HMLE cells (Figure S7B) with an associated

depletion of activating histone marks and an enrichment of the

repressive H3K27me3 mark (Figure S7C). Accordingly, further

repression is unnecessary, and the miRNAs tested here do not

appear to play an active role in repressing ZEB1 and ZEB2 under

these conditions. Consistent with this, the well-studied ZEB1/2

target gene CDH1 (Comijn et al., 2001) does not undergo signif-

icant changes; however, SNAI1, which has an earlier response

with induction of EMT (Dave et al., 2011), is not subject to the

same degree of histone-mediated regulation (Figure S7C) and

shows minor increases with antagomiR treatment against all

target miRNAs (Figure S7A). This provides strong evidence that

MET is not simply a direct reversal of EMT and is consistent

with previous reports that TGF-b-induced EMT involves transi-

tions through several states which aremediated by the switching

of multiple double-negative feedback loops (Zhang et al., 2014;

Tian et al., 2013). This lack of symmetry in gene regulation is

likely mediated by histone modifications and other epigenetic

mechanisms that can reinforce phenotypic change.

Combinatorial activities of miRNAs have been reported previ-

ously and recently reviewed (Bracken et al., 2016). The use of

antisense inhibitors to miR-21, miR-23a, and miR-27a for

example showed synergistic effects reducing the proliferation

of cells in culture and the growth of xenograft tumors in mice

to a greater extent than the inhibition of single miRNAs alone

(Frampton et al., 2014). Combinatorial activities of miRNAs co-

regulated from polycistronic clusters have also been character-

ized. The miR-192–miR-194–miR-215 cluster, for example, can

co-ordinately suppress tumor progression in renal cell carci-

noma (Khella et al., 2013). Similarly, each member of the let-

7c-miR-99b-miR-125b cluster directly targets interleukin-6

receptor (IL-6R) and other components of the IL-6-signal trans-

ducer and activator of transcription 3 signaling pathway to

decrease mammosphere growth, invasion, and the metastatic

spread of tumors in xenograft mouse models (Lin et al., 2016).

Computational studies also suggest that clustered miRNAs co-

regulate genes in shared protein interaction networks and that

the closer the proximity of proteins in the network, themore likely

they are to be targeted by miRNAs from the same cluster (Yuan

et al., 2009), but these predicted effects were not experimentally

validated. In agreement with the findings we present here, miR-

200 family members have been shown to be co-expressed with

the miR-96�miR-183 cluster in lung cancer, with both miRNA

families promoting an epithelial phenotype and preventing can-

cer invasion and metastasis (Kundu et al., 2016). It should be

noted, however, that many of these studies performed transfec-

tions with miRNA mimics/precursors at levels greatly exceeding

physiological abundances. The concentrations used here are

much closer to endogenous levels andwe suspect that observed

combinatorial activities may be increasingly important at lower

abundance levels.
(C) pro-mesenchymal EMT-promoting transcription factors, and (D) putative off-ta

not the TGF-b-induced HMLE-to-MesHMLE transition, are not previously assoc

family, miR-182 or miR-183. Error bars represent SD. Phenotypic effects of sing

proliferation assay and (F) a trans-well migration assay. Assays were performed
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Several of the miRNAs altered during the HMLE-to-MesHMLE

transition (Figure 3A) have been associated with mammary cell

differentiation, such that the downregulated miR-200 family

members are expressed in luminal cells, while upregulated

miR-143, miR-100, and miR-204 have been linked to mammary

stem cells/basal cells (Pal et al., 2015). It is possible that the mo-

lecular changes we observed during this TGF-b-induced EMT

correspond to a loss of cellular differentiation, while the pheno-

typic changes induced by our combinatorial miRNA treatment

(Figures 6E and 6F) reflect activation of a terminal differentiation

program, rather than a pure induction of MET achieved through

miR-200c alone. Indeed, the co-operation of these miRNAs in

both lung (Kundu et al., 2016) and breast tissue suggests a

more-general role in epithelialization.

In conclusion, we have shown that combinatorial miRNA regu-

lation provides a more efficacious approach to modulating cell

phenotype with reduced off-target effects when compared

with overexpression of individual miRNAs. The control of cell

phenotype by miRNAs appears to be mediated through both

the reinforcement of transcriptional changes and the buffering

of transcriptional noise, a feature of miRNA functionality that

has thus far been under-appreciated. Using an established cell

line model of EMT we have demonstrated that distributed,

combinatorial targeting by multiple miRNAs can produce a

more pronounced phenotypic effect than individual miRNAs

used at higher concentrations. Together, these results support

the hypothesis that EMT is co-ordinated through distributed

co-targeting by multiple miRNAs, suggesting that low-level co-

manipulation of miRNAs may provide an effective strategy to

minimize off-target effects while maintaining biological efficacy.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

E-Cadherin BD Biosciences Cat#610182; RRID:AB_397581

Zeb1 Cell Signaling Technologies Cat#D80D3; RRID:AB_1904164

Vimentin Cell Signaling Technologies Cat#5741; RRID:AB_10695459

a-tubulin Abcam Cat#Ab7291; RRID:AB_2241126

Goat anti-rabbit HRP Thermo Scientific Cat#31460; RRID:AB_228341

Goat anti-mouse HRP Thermo Scientific Cat#31446; RRID:AB_228318

Goat anti-mouse AlexaFluor-488 Thermo Scientific Cat#A-11029; RRID:AB_2534088

Goat anti-rabbit AlexaFluor-594 Thermo Scientific Cat#A-11037; RRID:AB_2534095

Histone H3 Abcam Cat#ab1791; RRID:AB_302613

H3K27Ac Millipore Cat#17-683; RRID:AB_1977529

H3K4me3 Abcam Cat#ab8580; RRID:AB_306649

H3K9-14Ac Millipore Cat#06-599; RRID:AB_2115283

H3K27me3 Abcam Cat#ab6002; RRID:AB_305237

Chemicals, Peptides, and Recombinant Proteins

RIPA lysis buffer (for western analysis) Abcam Cat#Ab156034,

Protease Inhibitor Cocktail Roche Cat#1183617001

Clarity Western ECL substrate Biorad Cat#170-5060

Human TGFb R&D Systems Cat#7754BH

HuMEC media (for HMLE cells) Gibco Cat#12752010

DMEM:F12 (1:1) media (for MesHMLE cells) Gibco Cat#11320033

rh EGF R&D Systems Cat#236-EG

Hydrocortisone Sigma Cat#H0888; Lot#119K1444

Human Insulin (rys) Novo Nordisk Actrapid Penfill 3mL 100IU

Lipofectamine RNAi Max Invitrogen Cat#13778030

Fibronectin Roche Cat#10638039001

Trizol Thermo Scientific Cat#15596026

ProLong gold antifade mounting reagent with DAPI Molecular Probes Cat#P36935

Fluorescent mounting medium DAKO Cat#S3023

Bis-Tris Bolt gels Life Technologies Cat#NW00100BOX

miRvana negative control miRNA inhibitor (antagomiR) Ambion Cat# 4464076;

Lot# AS028H0P

miRvana miR-141 inhibitor (antagomiR) Ambion Cat# 4464084;

ID# MH10860;

Lot# AS028TFR

miRvana miR-200c inhibitor (antagomiR) Ambion Cat# 4464084;

ID# MH117174;

Lot# AS028TFS

miRvana miR-182 inhibitor (antagomiR) Ambion Cat# 4464084;

ID# MH12369

Lot# AS028TFT

miRvana miR-183 inhibitor (antagomiR) Ambion Cat# 4464084;

ID# MH12830;

Lot# AS028TFU

Critical Commercial Assays

CyQuant Cell proliferation assay kit Invitrogen Cat#C7026

PolyA+ RNA isolation kit New England Biolabs Cat#E7490S

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Clarity Western ECL substrate BioRad Cat#170-5060

QuantiTect Reverse Transcription Kit Qiagen Cat#205313

Deposited Data

RNA-seq data This paper. Please refer to Table S4

for further details.

ENA: PRJEB8225

ENA: PRJEB25061 ENA: PRJEB25042

Small RNA-seq This paper. Please refer to Table S4

for further details.

ENA: PRJEB25116

MicroRNAome primary cell miRNA abundance data (McCall et al., 2017) https://genome.cshlp.org/content/suppl/

2017/09/06/gr.222067.117.DC1/

Supplemental_Table_S5.xlsx

Accessed 13th Dec 2017

TargetScan (v7.1) (Friedman et al., 2009; Grimson et al.,

2007; Lewis et al., 2005)

http://www.targetscan.org/

Accessed 25th May 2016

DIANA-microT CDS

NB: account creation is required to download

the DIANA-microT CDS database

(Paraskevopoulou et al., 2013;

Reczko et al., 2012)

http://diana.imis.athena-innovation.gr/

DianaTools/index.php?r=microT_

CDS/index

Accessed 11th Jan 2016

HUGO Gene Nomenclature Committee database (Gray et al., 2015) http://www.genenames.org/

Accessed 15th Dec 2017

Gene Ontology database (Ashburner et al., 2000) http://www.geneontology.org/

Accessed 6th July 2016

ENSEMBL Biomart data tables (Yates et al., 2016) http://ensembl.org/biomart

Accessed 31st March 2016 – 20th Oct 2016

Breast cancer cell line RNA-seq data (Daemen

et al., 2013)

(Daemen et al., 2013; Heiser et al.,

2012)

GEO: GSE48213

TCGA Breast Cancer RNA-seq and miRNA-seq data (The Cancer Genome Atlas Network,

2012)

https://portal.gdc.cancer.gov/projects/

TCGA-BRCA

mRNA data accessed Feb 2015

miRNA data accessed Dec 2016

hg19 reference genome - http://sapac.support.illumina.com/

sequencing/sequencing_software/

igenome.html

UCSC version used

Experimental Models: Cell Lines

HMLE cells ATCC CRL-4010

Oligonucleotides

qPCR primers GenePharma See Table S5 for primer sequences

Software and Algorithms

ImageJ Wayne Rasband, NIH https://imagej.nih.gov/ij/

v. 1.51p

RRID:SCR_003070

Image Lab Bio-Rad RRID:SCR_014210

Zen Zeiss RRID:SCR_013672

WinPython (64-bit) The Winpython development team http://winpython.github.io/

v. 3.5.2.1

NumPy + Intel� Math Kernel Library (Walt et al., 2011) via. WinPython

v. 1.11.1+mkl

Matplotlib (Hunter, 2007) via. WinPython

v. 1.5.2

Pandas (McKinney, 2010) via. WinPython

v. 0.18.1

SciPy (Jones et al., 2014) via. WinPython

v. 0.18.0rc2

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

scikit-learn (Pedregosa et al., 2011) via WinPython v. 0.17.1

networkx (Schult and Swart, 2008) via WinPython

v. 1.11

R The R Foundation https://www.r-project.org

v. 3.4

BioConductor (Huber et al., 2015) https://bioconductor.org/

v. 3.5

limma (with ROAST/FRY) (Goeman and Buhlmann, 2007;

Phipson and Smyth, 2010; Ritchie

et al., 2015; Wu et al., 2010)

via R/Bioconductor

v. 3.30.13

Rsubread (with featureCounts) (Liao et al., 2013) via R/Bioconductor

v. 1.24.2

edgeR (Robinson et al., 2010) via R/Bioconductor

v. 3.16.5

GSVA (with ssGSEA) (Hanzelmann et al., 2013; Verhaak

et al., 2013)

via R/Bioconductor

v. 1.26

TopHat (Kim et al., 2013) v. 2.0.9

Integrative Genomics Viewer (Thorvaldsdottir et al., 2013) http://software.broadinstitute.org/

software/igv/

v. 2.3.80

Cuffdiff (Trapnell et al., 2013) v. 2.1.1

BWA (Li and Durbin, 2009) http://bio-bwa.sourceforge.net/

v. 0.6.2

MACS (Zhang et al., 2008) http://liulab.dfci.harvard.edu/MACS/

v. 1.4.2

FastQC Babraham Bioinformatics http://www.bioinformatics.babraham.

ac.uk/projects/fastqc

v. 0.10.1 – v. 0.11.5

Other

Epithelial and mesenchymal gene lists for cell lines

and tissues

(Tan et al., 2014) http://embomolmed.embopress.org/

content/embomm/6/10/1279/DC2/embed/

inline-supplementary-material-2.pdf

Accessed Jun 2016

Chemidoc Touch imaging system BioRad 1708370

Confocal microscope Zeiss LSM 700
CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for further information should be directed to the Lead Contact Dr Melissa Davis (davis.m@wehi.edu.au).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissue Culture Cell Lines
The Human Mammary Epithelial Cells (HMLE) cell line is derived from a female patient and was obtained from the ATCC. The HMLE

cell line was grown in HuMEC ReadyMedia. A HMLE subline with a mesenchymal phenotype (MesHMLE) was achieved by culture in

DMEM:F12media (1:1) supplemented with 10mg/ml insulin, 20 ng/ml EGF, 0.5 mg/ml hydrocortisone, and 5% fetal calf serum (FCS)

and treatment with 2.5 ng/ml of TGFB1 for 24 days. MesHMLEs were then maintained in this supplemented media without TGFB1.

Cell line identity was authenticated by short tandem repeat profiling and mycoplasma testing was performed. Cells were grown at

37�C with 5% CO2 and saturated air humidity.

Selection of Target miRNAs
To consider miRNAs for perturbation in the context of EMT a literature search was performed, identifying over 130 miRNAs directly

implicated in regulating EMT (Table S1). As detailed below, experimental validation focussed on miRNAs which also undergo exten-

sive changes in the HMLE to MesHMLE transition.
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METHOD DETAILS

Tissue Culture
MesHMLEs were seeded into T25 flasks at a low density to allow for expansion and transfected with miRNA mimics using Lipofect-

amine RNAi-Max for 96h. Cells were then transfected with fresh reagents for an additional 24h before being used in proliferation and

migration assays. HMLEs were plated at 8x104 cells/mL in 12 well plates and transfected with antagomiRs using Lipofectamine

RNAi-Max for 72h. Where indicated, HMLE cells were transfected with miRNA inhibitor negative control, or miRNA inhibitors against

miR-200c, miR-141, miR-182, and/or miR-183 at a final concentration of 100nM. Individual antagomiRs were transfected at 25nM

with the negative control used to bring the final concentration to 100nM. For immunofluorescence, glass coverslips were inserted

into each well and incubated in fibronectin solution (25 mg per well at 50 mg/mL) at 37�C for 30 minutes. Excess fibronectin solution

was removed using a pipette and cells were plated onto the coverslips.

Isolation of RNA and Real-Time PCR
Total RNA was extracted using Trizol according to manufacturer instructions. Reverse transcription was performed using the

QuantiTect reverse transcription kit. Primers are listed in Table S5.

Western Blotting
Transfected MesHMLE cells were lysed in RIPA buffer with protease inhibitor cocktail and purified to produce whole cell extracts.

30 mg total protein was fractionated on 10% Bis-Tris Bolt gels. A 100 mM Tris-Cl, 150mM NaCl, and 0.05% Tween (TNT) buffer at

pH 7.5 was used. Proteins were transferred onto nitrocellulose membranes, blocked (5% skim milk powder in TNT) and probed in

blocking buffer with the following primary antibodies: a-Tubulin (1:5000), ZEB1 (1:500), E-Cadherin (1:1000) and Vimentin (1:1000)

overnight at 4�C. Blots were washed in TNT then probed with secondary antibodies (goat anti-rabbit HRP or goat anti-mouse

HRP) and visualized on the Chemidoc Touch imaging system following application of Clarity Western ECL substrate.

Immunofluorescence
Following transfection, cells were washed with warm PBS and fixed in 4% paraformaldehyde (PFA) for 10 minutes. The cells were

then permeabilized using wash buffer (0.1% Triton X-100/TBS) for 10 minutes, and blocked with 2% BSA in wash buffer for

1 hour at RT. Primary antibodies for E-Cadherin (1:500,) and Vimentin (1:100) were diluted in block buffer and applied to the coverslips

which were incubated overnight at 4�C. Following three 5 minute washes, the coverslips were incubated with goat anti-mouse

AlexaFluor 488 and anti-rabbit AlexaFluor 594 for 1 hour at RT. After washing, coverslips were mounted using ProLong Gold antifade

reagent with DAPI. Six images were taken per coverslip using a Zeiss LSM 700 confocal microscope.

Cellular Proliferation Assay
Transfected MesHMLE cells were dissociated, counted, and replated into four 96 well plates in quadruplicate at a density of 2x103

cells per well. Cells were left to settle at 37�C for 4 hours, after which plate 1 was removed (t=0h). The media was aspirated and the

plate waswrapped in parafilm and stored at -20�C. This was repeated for plates 2 (t=24h), 3 (t=48h) and 4 (t=72h). The CyQUANTCell

Proliferation Assay Kit was then used to quantify DNA content and thus, measure proliferation as per manufacturer instruction.

CyQUANT GR dye was applied to each well and sample fluorescence immediately measured using the Fluostar, with filters set

for excitation at 480nm and emission at 520nm.

Transwell Migration Assay
Transwell inserts were humidified with serum free media at 37�C for an hour. Meanwhile, transfected MesHMLE cells were dissoci-

ated, counted and resuspended in serum freemedia (DMEM+ EGF + insulin + hydrocortisone). Media was aspirated from transwells,

which were then placed above 600mL full media (5% added FCS). 2x105 transfected cells were added to individual transwells in trip-

licate, and incubated at 37�C for 4 hours. Each transwell was rinsed in PBS, then fixed in buffered formalin overnight at 4�C. Following

a PBS rinse, cells were removed from the inside membrane of the transwells using a cotton tip, and washed off with PBS. Transwells

were incubated with 0.1% Triton X for 5 minutes to permeabilise the cells, which were subsequently rinsed with water and incubated

with DAPI for 30 minutes at room temperature. The transwells were washed once more, the membranes dried and mounted onto

microscope slides with fluorescent mounting medium. DAPI was imaged in 6 distinct locations per membrane.

RNA-sequencing
Poly(A) enriched mRNA was extracted from HMLE and MesHMLE cells (biological triplicates), and miR-200c transfected MesHMLE

cells (biological duplicates). Poly(A) depleted mRNA was extracted from HMLE cells (biological duplicate) and MesHMLE cells (bio-

logical triplicate). All mRNA RNA-seq was collected using the Illumina HiSeq 2500 platform with a stranded paired end protocol, and

read length of 100. On average, 95 million raw paired reads were obtained for each sample (Table S4A). Small RNA-seq was per-

formed as previously described (Bracken et al., 2014). For data accession numbers please refer to the Key Resources Table.
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Histone Modification ChIP-seq
Histone modification ChIP-Seq in HMLE and MesHMLE cells was performed as previously described (Lim et al., 2013; Attema et al.,

2013). Antibodies are listed in the Key Resources Table.

QUANTIFICATION AND STATISTICAL ANALYSIS

Real-Time Quantitative PCR
Real-time PCR values were quantified relative to the average values for GAPDH and HPRT. Where indicated, significance was deter-

mined using a two-sided t-test for independent samples without assuming equal variance (i.e.Welch’s t-test), with the null hypothesis

that the sample means are equal. Statistical testing was performed using the SciPy (Jones et al., 2014) stats module.

Immunofluorescence
Across the six images taken, FIJI software was used to calculate the fluorescence intensity (integrated density) for each channel.

These values were normalized to the DAPI stain and averaged to obtain the mean fluorescence intensity per condition.

Cellular Proliferation Assay
CyQUANT fluorescence intensity data were blank corrected, averaged between technical replicates and normalised against the t=0h

time point for each transfection. Data are represented as mean fold change and standard deviation.

Transwell Migration Assay
Using image data from the transwell membranes, the number of cells per image was counted and the average per filter was then

averaged and normalised to the cell density of the original suspensions (as determined by the CyQUANT assay described above).

Histone Modification ChIP-seq
ChIP-seq analysis was performed as previously described (Attema et al., 2013; Lim et al., 2013). Briefly, read data were aligned to the

hg19 genome using BWA (Li and Durbin, 2009) and MACS (Zhang et al., 2008) was used to call peaks and determine differential

enrichment above local anti-Histone H3 background. Scores (Figure S7C) reflect the confidence of enrichment for each modification

of interest in a region -1 kb to +1kb from the annotated transcription start site of each gene.

RNA-sequencing
Raw reads were adapter trimmed and filtered using cutadapt v1.8 (Martin, 2011), setting the minimum-length to 18, the error-rate to

0.2, and allowing an overlap of 5 bases. The resulting FASTQ files were analysed and quality checked using FastQC. Filtered reads

were mapped against the human reference genome (hg19) using the TopHat spliced alignment algorithm (Kim et al., 2013) producing

an average alignment rate of 91% (Table S4). Alignments were visualised and interrogated using the Integrative Genomics Viewer

(Thorvaldsdottir et al., 2013). Cuffdiff (Trapnell et al., 2013) was used to quantify gene expression and estimate significance of differ-

ential transcript abundance.

RNA-seq data were also processed using a parallel alignment/quantification pipeline. The trimmed read data (described above)

were aligned to the hg19 reference genome using the R/Bioconductor package (Huber et al., 2015) Rsubread (Chen et al., 2016).

For gene set scoring (Figures 1D and S1B) and batch analysis (Figure S8), logCPM values were obtained using the R/Bioconductor

package edgeR without TMM normalisation (Robinson et al., 2010). These data were also used for a parallel EISA analysis

(details below).

Exon-Intron Split Analysis
The exon-intron split analysis (EISA) was performed essentially as described in Gaidatzis et al. (Gaidatzis et al., 2015). Custom python

scripts were used for all steps. HMLE andMesHMLE data fromPRJEB8225 and PRJEB25061were used (as these data containmore

intronic reads), while MesHMLE+miR-200c data were taken from PRJEB25042. Briefly, using only non-overlapping genes and

uniquely mapped reads, we quantified the number of reads in intronic and exonic regions in a strand-specific manner for all

UCSC RefSeq mRNA transcripts from each gene. Read pairs were ‘exonic’ if the 5’ end of the first read was mapped within an

exon of any UCSC transcript or ‘intronic’ if the first read mapped entirely within an intron and not within 10 base pairs of an exon.

Genes with insufficient read coverage (less than 24 reads in either intron or exonic read count) were discarded and the data was

log2 transformed after adding a pseudo-count of 8. For each sample, normalisation was performed separately for intronic and exonic

counts, dividing through by the total number of reads. To allow comparison between experiments, counts were then multiplied by a

standardised ratio of coverage of 40 for exons and 2 for introns (the coverage, in millions of reads, for a representative polyA-selected

sample). The analysis was performed for all possible combinations of pairs of samples where one sample was from each experi-

mental group (e.g. Group A replicate 1 vs Group B replicate 1, A1 vs B2, A2 vs B1, A2 vs B2). For each pair of individual replicates,

Dexon and Dintron were calculated as the difference in log2 read counts between experimental conditions. To summarise across

replicates, the means of the Dintron or Dexon values were calculated; in text these are referred to as ‘Dintron’ and ‘Dexon’. The

data were further filtered to ensure all of the examined genes were expressed (above the minimum coverage above) in all replicates

in at least one experimental group.
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For the parallel exon-intron split analysis, intronic and exonic counts from Rsubread were summarised using featureCounts (Liao

et al., 2014). ComparingDintron andDexon values from this alternative mapping to the values obtained by the standard EISA analysis

some quantitative differences were observed, although the results were largely consistent, particularly for theDexon data (Figure S2).

Computational Analysis
Subsequent computational analyses were performed using python (v 3.6) with pandas (McKinney, 2010), NumPy (Walt et al., 2011),

SciPy (Jones et al., 2014), scikit-learn (Pedregosa et al., 2011), Matplotlib (Hunter, 2007), and networkx (Schult and Swart, 2008).

Gene Identifiers
Gene identifiers were mapped against the HUGO Gene Nomenclature Committee (HGNC) database (Gray et al., 2015) and

ENSEMBL BioMart data tables (Aken et al., 2017; Yates et al., 2016) using python dictionaries.

Gene Set Scoring
A full description of the gene set scoring approach is given in (Foroutan et al., 2017). Briefly, a single-sample gene set enrichment

analysis (Verhaak et al., 2013) (ssGSEA) was applied through the R/Bioconductor package GSVA (Hanzelmann et al., 2013) to score

each sample against the epithelial and mesenchymal gene sets for tumour samples or for cell lines from Tan et al (Tan et al., 2014).

The pandas corr function was used to calculate the Pearson’s correlation betweenmiRNA abundance and epithelial score or mesen-

chymal score, and between the abundance of miRNAs.

Partitioning of Gene Sets by mRNA Transcript Differential Expression
To partition gene sets containing mRNAs with evidence of differential regulation through alternative transcriptional and post-tran-

scriptional processes (Figure 2A), the top/bottom 15th percentile of transcripts byDintron andDexon-Dintronwere taken for regulated

gene sets (Table 1). The genes with ‘no change’ were selected throughDintron,Dexon-Dintron and differential transcript abundances

centred around zero, with the percentile values indicated (Table 1, ‘No change’). The resulting number of gene transcripts within each

set is shown on Figure 2B.

Gene Ontology Analysis
Gene ontology (GO) (Ashburner et al., 2000; Gene Ontology Consortium, 2015) annotations were downloaded and using the under-

lying network structure (i.e. parent/child terms) GO membership was propagated up the annotation inheritance tree using networkx

(Schult and Swart, 2008) to improve coverage (Maetschke et al., 2012). To test the enrichment of membership for specific GO pro-

cesses a c2-test was applied with one degree of freedom (gene is a member/not a member) using expected values derived from

genome-wide frequencies/marginal probabilities. GO annotations with less than 20 or more than 500 members were discarded.

For multiple hypothesis testing a Bonferroni correction was applied using the number of remaining GO annotations (n=3691).

GO Enrichment with Limma and FRY
A limitation of the c2 test for gene set enrichment is a loss of quantitative information beyond defining transcripts as differentially ex-

pressed (or not). An alternative GO enrichment analysis was performed with Dexon and Dintron values from the Rsubread alignment

using the FRY method for ROAST (Goeman and Buhlmann, 2007; Phipson and Smyth, 2010; Wu et al., 2010) in the R/Bioconductor

package limma (Ritchie et al., 2015), with GO categories derived through propagation as described above (but here, performed

using R). The analysis of Dexon-Dintron data was achieved by specifying an appropriate design matrix for FRY.

The methods used and hypotheses tested by FRY are slightly different to those employed for the Gene Ontology enrichment per-

formed within themain text, and thus small differences in the selected are to be expected, although in general the results were similar

(Tables S3B–S3D).

HMLE System miRNA Ranking
To identify relatively-high abundance miRNAs which underwent large differential changes during the HMLE to MesHMLE transition

(Figure 3A) we ranked miRNAs by the product of their summed abundance (x; across both HMLE and MesHMLE states) and the ab-

solute value of the log2 fold change:

miRNA score = log10(xHMLE + xMesHMLE) *log2j(xHMLE/xMesHMLE)j

Predicted miRNA Targets
Predicted miRNA targets were taken from TargetScan (Friedman et al., 2009; Grimson et al., 2007; Lewis et al., 2005) for miRNA fam-

ilies, and DIANA-microT CDS (Paraskevopoulou et al., 2013; Reczko et al., 2012) for individual miRNAs. To select for relatively high-

confidence putative targets we took the high-confidence (top 5 percentile of) predictions from TargetScan (ranked by context+), and

DIANA-microT (ranked by miTG-score). Distributions of these metrics are shown in Figure S6.

There were some minor discrepancies where miRNAs mapped within the HMLE system data could not be directly mapped to

the TargetScan database. In particular: hsa-miR-381 (data) was mapped to hsa-miR-381-3p; hsa-miR-411-5p was mapped to
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both hsa-miR-411-5p.1 and hsa-miR-411-5p.2; and hsa-miR-183-5p was mapped to both hsa-miR-183-5p.1 and hsa-miR-183-

5p.2. It should be noted, however, that at least in the case of miR-183-5p, different isomiRs have shown enrichment in triple negative

breast cancer which is dependent upon patient race (Telonis et al., 2015), and these effects are not considered here.

MicroRNA Targeting Analysis
To examine the enrichment of high confidence miRNA targets within the EISA-filtered gene sets (Figure 3C), the relative fraction of

transcripts within each EISA-partitioned group (Figure 2A) was determined, and for each miRNA this was used to calculate the num-

ber of targets expected within each EISA-filtered set. The relative enrichment was calculated as: (nobserved - nexpected)/nexpected.

A schematic illustration of target overlap quantification (Figure 3E) is shown in Doc S1, together with an expanded description of the

method. Briefly, to examine the significance of direct miRNA target set overlap (Figure 3E, at top right), the frequency of targets for a

miRNA was used to calculate an expected frequency of shared targets when compared to another miRNA, under the assumption of

independence between miRNA target sets. A c2-statistic was calculated using the observed and numbers of shared targets, and a

c2-test was applied with 1 degree of freedom to estimate a p-value for evidence against the null hypothesis thatmiRNA target sets are

independent. A Bonferroni correction was applied, and adjusted p-valueswere calculated bymultiplying the estimated p-value by the

total number of miRNA pairs: (nmiRNAs*(nmiRNAs - 1))/2.

Next, a protein-protein interaction (PPI) network was constructed by combining experimentally observed interactions fromBioPlex

(Huttlin et al., 2015), PINA v2.0 (Cowley et al., 2012) and InnateDB (Breuer et al., 2013). For each pair of miRNAs (Figure 3E, bottom

left) we used the target lists to construct a bipartite graph, and calculated the resulting graph density (rbipartite) - a function of the num-

ber of edges between bipartite sets (nedgesBetween), the number of nodes targeted only bymiR-x (nTarg(miR-x & �miR-y)) and the number of

nodes targeted only by miR-y (nTarg(miR-y & �miR-x)):

rbipartite = nedgesBetween
��
nTargðmiR�x &�miR�yÞ

��
nTargðmiR�y &�miR�xÞ

�

The distribution of density values was Gaussian and approximately Normal, thus density values (r) were converted to a Z-score

using the sample mean ðbmÞ and standard deviation ðbsÞ : ZðriÞ = ri � bmðrÞ=bsðrÞ. As illustrated, this approach ignores nodes

(mRNA transcripts) targeted by both miRNAs and edges (protein interactions) between targets of an individual miRNA; however

both of these features will to an extent be captured by the direct miRNA target overlap (Figure 3E at top right).

DATA AND SOFTWARE AVAILABILITY

HMLE System RNA-seq Data
HMLE cell linemodel data used in this study are available from the European Nucleotide Archive. For further details please refer to the

Key Resources Table and Table S4.

Machine readable versions of supplementary tables and data are available through the project GitHub repository (see below).

Computational Scripts
Computational scripts associated with this report are available under an MIT license, from: http://github.com/DavisLaboratory/

Combinatorial_miRNAs.
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